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Abstract

Robotic path planning in complex and dynamic environments remains a significant challenge
due to the need for real-time adaptability, environmental uncertainty, and computational
efficiency. Traditional algorithms often fail to generalize across varied terrains and obstacle
configurations, necessitating more intelligent and adaptive solutions. This chapter presents a
hybrid framework that integrates Deep Reinforcement Learning (DRL) with Evolutionary
Strategies (ES) to develop robust, scalable, and generalizable navigation policies for autonomous
robotic agents. The proposed integration leverages the exploration capacity of ES and the fine-
tuned learning efficiency of DRL to enhance both convergence speed and behavioral resilience in
unpredictable scenarios. Key innovations include the use of modular policy architectures,
transferable policy graphs, and meta-learning techniques that enable the system to rapidly adapt
across multi-environment navigation tasks. Extensive evaluation in simulated and varied settings
demonstrates superior performance in terms of path optimality, generalization, and real-time
decision-making compared to conventional standalone approaches. The chapter also introduces a
set of architecture-aware evaluation frameworks, including ablation studies and environment-
driven policy adaptation metrics, to measure generalization capability comprehensively. By
bridging model-free learning and evolutionary optimization, the hybrid paradigm outlined in this
work establishes a new foundation for scalable autonomous navigation in diverse and uncertain
environments.
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Introduction

The ability of robots to autonomously navigate through complex, dynamic, and partially known
environments is foundational to their successful deployment in real-world applications such as
autonomous driving, search and rescue missions, planetary exploration, and warehouse logistics
[1]. Robotic path planning, therefore, remains a critical area of research in autonomous systems,
focused on generating efficient and collision-free trajectories from an origin to a destination while
accounting for environmental constraints and uncertainties [2]. Classical algorithms such as A*,
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Dijkstra’s, and RRT variants have provided elegant and computationally tractable solutions in
deterministic or semi-structured environments [3]. As robotic platforms evolve toward greater
autonomy and are expected to function in diverse, unstructured, and dynamic real-world domains,
these conventional methods often fall short in terms of adaptability, robustness, and generalization
[4]. This growing complexity in operational contexts calls for learning-driven, intelligent path
planning paradigms capable of real-time decision-making under uncertainty [5].

Deep Reinforcement Learning (DRL) has recently emerged as a powerful solution to the
challenges faced in robotic navigation by enabling agents to learn optimal policies through
interactions with their environment [6]. By combining the representational power of deep neural
networks with reinforcement learning's sequential decision-making capabilities, DRL facilitates
end-to-end learning from high-dimensional sensory inputs to control actions [7]. Its ability to learn
directly from raw inputs such as images, lidar scans, or point clouds eliminates the need for manual
feature engineering, making it particularly suited for high-complexity environments [8].
Nonetheless, DRL models often face significant challenges in real-world applications. These
include poor sample efficiency, instability during training, sensitivity to hyperparameters, and a
tendency to overfit to training environments [9]. The reliance on finely tuned reward functions and
the difficulty in handling sparse rewards exacerbate the problem of generalization, making
standalone DRL approaches inadequate for broad deployment across varied and unseen settings
[10].

To overcome these limitations, Evolutionary Strategies (ES) have gained attention as an
alternative or complementary approach. ES are population-based optimization techniques inspired
by biological evolution, operating through selection, mutation, and recombination of candidate
solutions across generations [11]. These strategies are inherently parallelizable, require no gradient
information, and are well-suited for navigating noisy, non-differentiable, or deceptive search
spaces [12]. In robotic path planning, ES can be used to evolve control policies, optimize
hyperparameters, and explore diverse behavioral strategies [13]. Their robustness to environmental
perturbations and their capacity to maintain diversity in the policy population make them
particularly attractive for applications involving uncertainty and non-linearity [14]. ES alone can
struggle with fine-grained policy learning and may require extensive computational resources to
converge. This motivates the integration of DRL and ES into unified hybrid frameworks that
combine the respective strengths of local policy refinement and global exploration [15].



