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Abstract 

Robotic path planning in complex and dynamic environments remains a significant challenge 

due to the need for real-time adaptability, environmental uncertainty, and computational 

efficiency. Traditional algorithms often fail to generalize across varied terrains and obstacle 

configurations, necessitating more intelligent and adaptive solutions. This chapter presents a 

hybrid framework that integrates Deep Reinforcement Learning (DRL) with Evolutionary 

Strategies (ES) to develop robust, scalable, and generalizable navigation policies for autonomous 

robotic agents. The proposed integration leverages the exploration capacity of ES and the fine-

tuned learning efficiency of DRL to enhance both convergence speed and behavioral resilience in 

unpredictable scenarios. Key innovations include the use of modular policy architectures, 

transferable policy graphs, and meta-learning techniques that enable the system to rapidly adapt 

across multi-environment navigation tasks. Extensive evaluation in simulated and varied settings 

demonstrates superior performance in terms of path optimality, generalization, and real-time 

decision-making compared to conventional standalone approaches. The chapter also introduces a 

set of architecture-aware evaluation frameworks, including ablation studies and environment-

driven policy adaptation metrics, to measure generalization capability comprehensively. By 

bridging model-free learning and evolutionary optimization, the hybrid paradigm outlined in this 

work establishes a new foundation for scalable autonomous navigation in diverse and uncertain 

environments. 
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Introduction 

The ability of robots to autonomously navigate through complex, dynamic, and partially known 

environments is foundational to their successful deployment in real-world applications such as 

autonomous driving, search and rescue missions, planetary exploration, and warehouse logistics 

[1]. Robotic path planning, therefore, remains a critical area of research in autonomous systems, 

focused on generating efficient and collision-free trajectories from an origin to a destination while 

accounting for environmental constraints and uncertainties [2]. Classical algorithms such as A*, 
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Dijkstra’s, and RRT variants have provided elegant and computationally tractable solutions in 

deterministic or semi-structured environments [3]. As robotic platforms evolve toward greater 

autonomy and are expected to function in diverse, unstructured, and dynamic real-world domains, 

these conventional methods often fall short in terms of adaptability, robustness, and generalization 

[4]. This growing complexity in operational contexts calls for learning-driven, intelligent path 

planning paradigms capable of real-time decision-making under uncertainty [5]. 

Deep Reinforcement Learning (DRL) has recently emerged as a powerful solution to the 

challenges faced in robotic navigation by enabling agents to learn optimal policies through 

interactions with their environment [6]. By combining the representational power of deep neural 

networks with reinforcement learning's sequential decision-making capabilities, DRL facilitates 

end-to-end learning from high-dimensional sensory inputs to control actions [7]. Its ability to learn 

directly from raw inputs such as images, lidar scans, or point clouds eliminates the need for manual 

feature engineering, making it particularly suited for high-complexity environments [8]. 

Nonetheless, DRL models often face significant challenges in real-world applications. These 

include poor sample efficiency, instability during training, sensitivity to hyperparameters, and a 

tendency to overfit to training environments [9]. The reliance on finely tuned reward functions and 

the difficulty in handling sparse rewards exacerbate the problem of generalization, making 

standalone DRL approaches inadequate for broad deployment across varied and unseen settings 

[10]. 

To overcome these limitations, Evolutionary Strategies (ES) have gained attention as an 

alternative or complementary approach. ES are population-based optimization techniques inspired 

by biological evolution, operating through selection, mutation, and recombination of candidate 

solutions across generations [11]. These strategies are inherently parallelizable, require no gradient 

information, and are well-suited for navigating noisy, non-differentiable, or deceptive search 

spaces [12]. In robotic path planning, ES can be used to evolve control policies, optimize 

hyperparameters, and explore diverse behavioral strategies [13]. Their robustness to environmental 

perturbations and their capacity to maintain diversity in the policy population make them 

particularly attractive for applications involving uncertainty and non-linearity [14]. ES alone can 

struggle with fine-grained policy learning and may require extensive computational resources to 

converge. This motivates the integration of DRL and ES into unified hybrid frameworks that 

combine the respective strengths of local policy refinement and global exploration [15]. 

 


